Helicone - OSS LLM Observability Platform
This is community maintained. Please make an issue if you run into a bug: https://github.com/BerriAI/litellm
Helicone is an open sourced observability platform providing key insights into your usage, spend, latency and more.
Quick Start
- Python SDK
- LiteLLM Proxy
Use just 1 line of code to instantly log your responses across all providers with Helicone:
import os
from litellm import completion
## Set env variables
os.environ["HELICONE_API_KEY"] = "your-helicone-key"
# OpenAI call
response = completion(
model="helicone/gpt-4o-mini",
messages=[{"role": "user", "content": "Hi 👋 - I'm OpenAI"}],
)
print(response)
Add Helicone to your LiteLLM proxy configuration:
model_list:
- model_name: gpt-4
litellm_params:
model: gpt-4
api_key: os.environ/OPENAI_API_KEY
# Add Helicone callback
litellm_settings:
success_callback: ["helicone"]
# Set Helicone API key
environment_variables:
HELICONE_API_KEY: "your-helicone-key"
Start the proxy:
litellm --config config.yaml
Integration Methods
There are two main approaches to integrate Helicone with LiteLLM:
- As a Provider: Use Helicone to log requests for all models supported
- Callbacks: Log to Helicone while using any provider
Supported LLM Providers
Helicone can log requests across all major LLM providers, including:
- OpenAI
- Azure
- Anthropic
- Gemini
- Groq
- Cohere
- Replicate
- And more
Method 1: Using Helicone as a Provider
Helicone's AI Gateway provides advanced functionality like caching, rate limiting, LLM security, and more.
- Python SDK
Set Helicone as your base URL and pass authentication headers:
import os
import litellm
from litellm import completion
os.environ["HELICONE_API_KEY"] = "" # your Helicone API key
messages = [{"content": "What is the capital of France?", "role": "user"}]
# Helicone call - routes through Helicone gateway to any model
response = completion(
model="helicone/gpt-4o-mini", # or any 100+ models
messages=messages
)
print(response)
Advanced Usage
You can add custom metadata and properties to your requests using Helicone headers. Here are some examples:
litellm.metadata = {
"Helicone-User-Id": "user-abc", # Specify the user making the request
"Helicone-Property-App": "web", # Custom property to add additional information
"Helicone-Property-Custom": "any-value", # Add any custom property
"Helicone-Prompt-Id": "prompt-supreme-court", # Assign an ID to associate this prompt with future versions
"Helicone-Cache-Enabled": "true", # Enable caching of responses
"Cache-Control": "max-age=3600", # Set cache limit to 1 hour
"Helicone-RateLimit-Policy": "10;w=60;s=user", # Set rate limit policy
"Helicone-Retry-Enabled": "true", # Enable retry mechanism
"helicone-retry-num": "3", # Set number of retries
"helicone-retry-factor": "2", # Set exponential backoff factor
"Helicone-Model-Override": "gpt-3.5-turbo-0613", # Override the model used for cost calculation
"Helicone-Session-Id": "session-abc-123", # Set session ID for tracking
"Helicone-Session-Path": "parent-trace/child-trace", # Set session path for hierarchical tracking
"Helicone-Omit-Response": "false", # Include response in logging (default behavior)
"Helicone-Omit-Request": "false", # Include request in logging (default behavior)
"Helicone-LLM-Security-Enabled": "true", # Enable LLM security features
"Helicone-Moderations-Enabled": "true", # Enable content moderation
}
Caching and Rate Limiting
Enable caching and set up rate limiting policies:
litellm.metadata = {
"Helicone-Cache-Enabled": "true", # Enable caching of responses
"Cache-Control": "max-age=3600", # Set cache limit to 1 hour
"Helicone-RateLimit-Policy": "100;w=3600;s=user", # Set rate limit policy
}
Method 2: Using Callbacks
Log requests to Helicone while using any LLM provider directly.
- Python SDK
- LiteLLM Proxy
import os
import litellm
from litellm import completion
## Set env variables
os.environ["HELICONE_API_KEY"] = "your-helicone-key"
os.environ["OPENAI_API_KEY"] = "your-openai-key"
# os.environ["HELICONE_API_BASE"] = "" # [OPTIONAL] defaults to `https://api.helicone.ai`
# Set callbacks
litellm.success_callback = ["helicone"]
# OpenAI call
response = completion(
model="gpt-4o",
messages=[{"role": "user", "content": "Hi 👋 - I'm OpenAI"}],
)
print(response)
model_list:
- model_name: gpt-4
litellm_params:
model: gpt-4
api_key: os.environ/OPENAI_API_KEY
- model_name: claude-3
litellm_params:
model: anthropic/claude-3-sonnet-20240229
api_key: os.environ/ANTHROPIC_API_KEY
# Add Helicone logging
litellm_settings:
success_callback: ["helicone"]
# Environment variables
environment_variables:
HELICONE_API_KEY: "your-helicone-key"
OPENAI_API_KEY: "your-openai-key"
ANTHROPIC_API_KEY: "your-anthropic-key"
Start the proxy:
litellm --config config.yaml
Make requests to your proxy:
import openai
client = openai.OpenAI(
api_key="anything", # proxy doesn't require real API key
base_url="http://localhost:4000"
)
response = client.chat.completions.create(
model="gpt-4", # This gets logged to Helicone
messages=[{"role": "user", "content": "Hello!"}]
)
Session Tracking and Tracing
Track multi-step and agentic LLM interactions using session IDs and paths:
- Python SDK
- LiteLLM Proxy
import os
import litellm
from litellm import completion
os.environ["HELICONE_API_KEY"] = "" # your Helicone API key
messages = [{"content": "What is the capital of France?", "role": "user"}]
response = completion(
model="helicone/gpt-4",
messages=messages,
metadata={
"Helicone-Session-Id": "session-abc-123",
"Helicone-Session-Path": "parent-trace/child-trace",
}
)
print(response)
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://localhost:4000"
)
# First request in session
response1 = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}],
extra_headers={
"Helicone-Session-Id": "session-abc-123",
"Helicone-Session-Path": "conversation/greeting"
}
)
# Follow-up request in same session
response2 = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Tell me more"}],
extra_headers={
"Helicone-Session-Id": "session-abc-123",
"Helicone-Session-Path": "conversation/follow-up"
}
)
Helicone-Session-Id: Unique identifier for the session to group related requestsHelicone-Session-Path: Hierarchical path to represent parent/child traces (e.g., "parent/child")
Retry and Fallback Mechanisms
- Python SDK
- LiteLLM Proxy
import litellm
litellm.api_base = "https://ai-gateway.helicone.ai/"
litellm.metadata = {
"Helicone-Retry-Enabled": "true",
"helicone-retry-num": "3",
"helicone-retry-factor": "2",
}
response = litellm.completion(
model="helicone/gpt-4o-mini/openai,claude-3-5-sonnet-20241022/anthropic", # Try OpenAI first, then fallback to Anthropic, then continue with other models
messages=[{"role": "user", "content": "Hello"}]
)
model_list:
- model_name: gpt-4
litellm_params:
model: gpt-4
api_key: os.environ/OPENAI_API_KEY
api_base: "https://oai.hconeai.com/v1"
default_litellm_params:
headers:
Helicone-Auth: "Bearer ${HELICONE_API_KEY}"
Helicone-Retry-Enabled: "true"
helicone-retry-num: "3"
helicone-retry-factor: "2"
Helicone-Fallbacks: '["gpt-3.5-turbo", "gpt-4"]'
environment_variables:
HELICONE_API_KEY: "your-helicone-key"
OPENAI_API_KEY: "your-openai-key"
Supported Headers - For a full list of supported Helicone headers and their descriptions, please refer to the Helicone documentation. By utilizing these headers and metadata options, you can gain deeper insights into your LLM usage, optimize performance, and better manage your AI workflows with Helicone and LiteLLM.